Phase operator on $L^2(Q_p)$ and the zeroes of its resolvent

Debashis Ghoshal

School of Physical Sciences Jawaharlal Nehru University New Delhi

VIII-th International Conference on *p*-Adic MathPhys and its Applications Web Conference (Cinvestav / CONACYT / UTRGV) May 24, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

This talk is based on a collaboration with Parikshit Dutta arXiv:2102.13445

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

This talk is based on a collaboration with Parikshit Dutta arXiv:2102.13445

Local Organizing Committee: Kozyrev, Russia; León-Cardenal, Mexico; Rakič, Serbia and Zúñiga-Galindo, Mexico / USA

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

This talk is based on a collaboration with Parikshit Dutta arXiv:2102.13445

Local Organizing Committee: Kozyrev, Russia; León-Cardenal, Mexico; Rakič, Serbia and Zúñiga-Galindo, Mexico / USA

Appropriately this can be local only in a *p*-adic metric!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Motivation

Phase operator A simple model in statistical mechanics Phase operators related to the ζ -function

Outline

Motivation

Phase operator

A simple model in statistical mechanics

Phase operators related to the ζ -function

イロト イヨト イヨト イヨト

Riemann zeta function: infinite sum and product

Riemann ζ -function is one of the most enigmatic functions—it is related to the prime numbers, plausibly via the Riemann hypothesis. Although proving it would be a ^{\$\$} profitable^{\$\$} enterprise, it is beyond the scope of this talk!

イロト イポト イヨト イヨト

Riemann zeta function: infinite sum and product

Riemann ζ -function is one of the most enigmatic functions—it is related to the prime numbers, plausibly via the Riemann hypothesis. Although proving it would be a ^{\$\$}profitable^{\$\$} enterprise, it is beyond the scope of this talk!

Euler defined the infinite sum $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, which is convergent for

Re (s) > 1. He also gave the equivalent infinite product form

$$\zeta(s) = \prod_{p \in \text{primes}} \frac{1}{(1 - p^{-s})} = \prod_{p \in \text{primes}} \underbrace{\zeta_p(s)}_{\text{local } \zeta\text{-function}}$$

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Riemann zeta function: infinite sum and product

Riemann ζ -function is one of the most enigmatic functions—it is related to the prime numbers, plausibly via the Riemann hypothesis. Although proving it would be a ^{\$\$}profitable^{\$\$} enterprise, it is beyond the scope of this talk!

Euler defined the infinite sum $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, which is convergent for

Re (s) > 1. He also gave the equivalent infinite product form

$$\zeta(s) = \prod_{p \in \text{primes}} \frac{1}{(1 - p^{-s})} = \prod_{p \in \text{primes}} \underbrace{\zeta_p(s)}_{\text{local } \zeta\text{-function}}$$

Riemann proposed to think of *s* as a *complex* variable and *analytically continued* it as a meromorphic function on the *s*-plane.

<ロ> (四) (四) (注) (注) (注) (注)

Riemann zeta as partition function

Motivated by the proposal of Hilbert and Polya, physicists have tried to realise the zeta (and related functions) as the partition function $(\sim \text{Tr } e^{-\beta H})$ of a 'physical' quantum / statistical system.

イロト イポト イヨト イヨト

Riemann zeta as partition function

Motivated by the proposal of Hilbert and Polya, physicists have tried to realise the zeta (and related functions) as the partition function $(\sim \text{Tr } e^{-\beta H})$ of a 'physical' quantum / statistical system. Examples: • Primon gas [Spector], [Julia], [Bakas-Bowick], [Knauf]

(D) (A) (A) (A)

Riemann zeta as partition function

Motivated by the proposal of Hilbert and Polya, physicists have tried to realise the zeta (and related functions) as the partition function ($\sim \text{Tr} e^{-\beta H}$) of a 'physical' quantum / statistical system. Examples: • Primon gas [Spector], [Julia], [Bakas-Bowick], [Knauf] • Quantum particle in one-dimension in a potential, e.g., [Wu-Sprung], [Mussardo], [Mack *et al*]

イロト イポト イヨト イヨト

Riemann zeta as partition function

Motivated by the proposal of Hilbert and Polya, physicists have tried to realise the zeta (and related functions) as the partition function ($\sim \text{Tr} e^{-\beta H}$) of a 'physical' quantum / statistical system. Examples: • Primon gas [Spector], [Julia], [Bakas-Bowick], [Knauf] • Quantum particle in one-dimension in a potential, e.g., [Wu-Sprung], [Mussardo], [Mack *et al*] • Random matrix model, e.g, [Bohigas *et al*] and our own 'reverse

engineering approach' via local factors A. Chattopadhyay, P. Dutta, S. Dutta and DG, arXiv: 1807.07342 [math-ph]

(D) (A) (A) (A) (A)

Riemann zeta as partition function

Motivated by the proposal of Hilbert and Polya, physicists have tried to realise the zeta (and related functions) as the partition function ($\sim \text{Tr} e^{-\beta H}$) of a 'physical' quantum / statistical system. Examples: • Primon gas [Spector], [Julia], [Bakas-Bowick], [Knauf] • Quantum particle in one-dimension in a potential, e.g., [Wu-Sprung], [Mussardo], [Mack *et al*]

• Random matrix model, e.g, [Bohigas *et al*] and our own 'reverse engineering approach' via local factors A. Chattopadhyay, P. Dutta, S. Dutta and DG, arXiv: 1807.07342 [math-ph]

 $\zeta(s) \sim \operatorname{Tr}_{\mathcal{H}_{-}} \left(\mathbb{D}^{-s} \right)$

 $\mathbb{D} \sim \prod_{p} D_{(p)}$: Vladimirov derivative, $\mathcal{H}_{-} = \bigotimes_{p} \mathcal{H}_{-}^{(p)}$, where $\mathcal{H}_{-}^{(p)} = L^{2} \left(p^{-1} \mathbb{Z}_{p} \right)$ is a subspace of square integrable complex valued functions on the *p*-adic space \mathbb{Q}_{p} spanned by the Kozyrev wavelets.

Partition function and its zeroes: Yang-Lee and Fisher

Today we shall discuss statistical systems related to the Riemann zeta (and Dirichlet L-) functions.

Partition function and its zeroes: Yang-Lee and Fisher

Today we shall discuss statistical systems related to the Riemann zeta (and Dirichlet L-) functions.

The partition function of a statistical system depend on a number of parameters, such as the (inverse) temperature $\beta = \frac{1}{k_B T}$, externally applied magnetic field *B*, etc.

イロト イポト イヨト イヨト

Partition function and its zeroes: Yang-Lee and Fisher

Today we shall discuss statistical systems related to the Riemann zeta (and Dirichlet L-) functions.

The partition function of a statistical system depend on a number of parameters, such as the (inverse) temperature $\beta = \frac{1}{k_B T}$, externally applied magnetic field *B*, etc.

The partition function is seen to have zeroes when it is analytically continued to *complex* values of the parameters. Moreover, they lie along specific curves in the complex *B*-plane (Yang-Lee) or in the complex β -plane (Fisher).

イロト 不得下 イヨト イヨト

Partition function and its zeroes: Yang-Lee and Fisher

Today we shall discuss statistical systems related to the Riemann zeta (and Dirichlet L-) functions.

The partition function of a statistical system depend on a number of parameters, such as the (inverse) temperature $\beta = \frac{1}{k_B T}$, externally applied magnetic field *B*, etc.

The partition function is seen to have zeroes when it is analytically continued to *complex* values of the parameters. Moreover, they lie along specific curves in the complex *B*-plane (Yang-Lee) or in the complex β -plane (Fisher).

We shall need a phase operator that is "canonically conjugate" (in a limited sense) to the Hamiltonian.

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

Outline

Motivation

Phase operator

A simple model in statistical mechanics

Phase operators related to the ζ -function

イロン イヨン イヨン イヨン

Classical phase and its quantum analogue: SHO

The spectra of our Hamiltonians are discrete. A familiar example of such a system is the simple harmonic oscillator (SHO) described by the Hamiltonian $H = \frac{1}{2}p^2 + \frac{1}{2}\omega^2 x^2$.

イロト 不得下 イヨト イヨト

Classical phase and its quantum analogue: SHO

The spectra of our Hamiltonians are discrete. A familiar example of such a system is the simple harmonic oscillator (SHO) described by the Hamiltonian $H = \frac{1}{2}p^2 + \frac{1}{2}\omega^2 x^2$.

Classical: $(\phi = \omega t)$

$$x = \frac{1}{\sqrt{2}} \left(A e^{i\phi} + A^* e^{-i\phi} \right)$$
$$p = \frac{i}{\sqrt{2}} \omega \left(A e^{i\phi} - A^* e^{-i\phi} \right)$$
$$H = \omega^2 |A|^2$$

(日) (部) (E) (E) (E)

Classical phase and its quantum analogue: SHO

The spectra of our Hamiltonians are discrete. A familiar example of such a system is the simple harmonic oscillator (SHO) described by the Hamiltonian $H = \frac{1}{2}p^2 + \frac{1}{2}\omega^2 x^2$.

Classical: $(\phi = \omega t)$

Quantum:

$$x = \frac{1}{\sqrt{2}} \left(A e^{i\phi} + A^* e^{-i\phi} \right)$$
$$p = \frac{i}{\sqrt{2}} \omega \left(A e^{i\phi} - A^* e^{-i\phi} \right)$$
$$H = \omega^2 |A|^2$$

$$\begin{split} \hat{x} &= \sqrt{\frac{1}{2\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right) \\ \hat{p} &= i \sqrt{\frac{\omega}{2}} \left(\hat{a} - \hat{a}^{\dagger} \right) \\ \hat{H} &= \omega \left(a^{\dagger} a + \frac{1}{2} \right) = \omega \left(\hat{N} + \frac{1}{2} \right) \end{split}$$

Classical phase and its quantum analogue: SHO

The spectra of our Hamiltonians are discrete. A familiar example of such a system is the simple harmonic oscillator (SHO) described by the Hamiltonian $H = \frac{1}{2}p^2 + \frac{1}{2}\omega^2 x^2$.

Classical: $(\phi = \omega t)$

Quantum:

 $\begin{aligned} x &= \frac{1}{\sqrt{2}} \left(A e^{i\phi} + A^* e^{-i\phi} \right) & \hat{x} &= \sqrt{\frac{1}{2\omega}} \left(\hat{a} + \hat{a}^\dagger \right) \\ p &= \frac{i}{\sqrt{2}} \omega \left(A e^{i\phi} - A^* e^{-i\phi} \right) & \hat{p} &= i\sqrt{\frac{\omega}{2}} \left(\hat{a} - \hat{a}^\dagger \right) \\ H &= \omega^2 |A|^2 & \hat{H} &= \omega \left(a^\dagger a + \frac{1}{2} \right) &= \omega \left(\hat{N} + \frac{1}{2} \right) \end{aligned}$

 $\text{Correspondence } \sqrt{\omega} A e^{i\phi} \rightarrow \hat{a} \stackrel{?}{=} e^{-i\hat{\phi}} \sqrt{\hat{N}}, \ \hat{a}^{\dagger} \stackrel{?}{=} \sqrt{\hat{N}} e^{i\hat{\phi}}$

(日) (周) (王) (王) (王)

SHO: a contradiction

If the purported phase operator $\hat{\phi}$ is hermitian, equivalently, $e^{i\hat{\phi}}$ is unitary, we get a contradiction.

イロン イヨン イヨン イヨン

э

SHO: a contradiction

If the purported phase operator $\hat{\phi}$ is hermitian, equivalently, $e^{i\hat{\phi}}$ is unitary, we get a contradiction. Canonical commutation relation $[\hat{x}, \hat{p}] = i$ implies $[\hat{a}, \hat{a}^{\dagger}] = 1$. Consequently

$$\left[\hat{N},e^{i\hat{\phi}}
ight]=e^{i\hat{\phi}}, \qquad \left[\hat{\phi},\hat{N}
ight]=i \quad ext{(canonically conjugate pair)}$$

・ロト ・四ト ・ヨト ・ヨト

SHO: a contradiction

If the purported phase operator $\hat{\phi}$ is hermitian, equivalently, $e^{i\hat{\phi}}$ is unitary, we get a contradiction. Canonical commutation relation $[\hat{x}, \hat{p}] = i$ implies $[\hat{a}, \hat{a}^{\dagger}] = 1$. Consequently

$$\left[\hat{N},e^{i\hat{\phi}}
ight]=e^{i\hat{\phi}}, \qquad \left[\hat{\phi},\hat{N}
ight]=i \quad \mbox{(canonically conjugate pair)}$$

In the number state basis (eigenstates of the number operator \hat{N}) the commutator is

$$\langle n | \hat{\phi} | m \rangle = -i \delta_{nm}$$

which is inconsistent.

[Susskind-Glogower]

• The operator $\exp(i\hat{\phi})$ cannot be unitary.

D Ghoshal (JNU) Phase operator on $L^2(Q_p)$ and the zeroes of its resolver

イロン イヨン イヨン イヨン

- The operator $\exp(i\hat{\phi})$ cannot be unitary.
- Phase is angle valued hence periodic: $\phi \sim \phi + 2\pi$.

イロン イヨン イヨン イヨン

- The operator $\exp(i\hat{\phi})$ cannot be unitary.
- Phase is angle valued hence periodic: $\phi \sim \phi + 2\pi$.
- In the covering space \mathbb{R} , the eigenvalues of $\hat{\phi}$ must have a discontinuity.

・ロト ・回ト ・ヨト ・ヨト

- The operator $\exp(i\hat{\phi})$ cannot be unitary.
- Phase is angle valued hence periodic: $\phi \sim \phi + 2\pi$.
- In the covering space ℝ, the eigenvalues of φ̂ must have a discontinuity.
- The eigenvalues of the number operator \hat{N} take only positive integer values.

・ロト ・回ト ・ヨト ・ヨト

- The operator $\exp(i\hat{\phi})$ cannot be unitary.
- Phase is angle valued hence periodic: $\phi \sim \phi + 2\pi$.
- ► In the covering space ℝ, the eigenvalues of φ̂ must have a discontinuity.
- The eigenvalues of the number operator \hat{N} take only positive integer values.

Similar issues are faced in defining an operator canonically conjugate to one with a finite (discrete) spectrum.

・ロト ・聞ト ・ヨト ・ヨト

SU(2) spin *j* and phase operator I

SU(2) group generated by hermitian operators \hat{S}_i , i = 1, 2, 3 admit 2j + 1 (finite) dimensional representations for $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$.

(ロ) (部) (E) (E) (E)

SU(2) spin *j* and phase operator I

SU(2) group generated by hermitian operators \hat{S}_i , i = 1, 2, 3 admit 2j + 1 (finite) dimensional representations for $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$. A basis for the vector space consist of the eigenstates $|m\rangle$, $m = -j, -j + 1, \cdots, j - 1, j$ of \hat{S}_3 .

SU(2) spin *j* and phase operator I

SU(2) group generated by hermitian operators \hat{S}_i , i = 1, 2, 3 admit 2j + 1 (finite) dimensional representations for $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$. A basis for the vector space consist of the eigenstates $|m\rangle$, $m = -j, -j + 1, \cdots, j - 1, j$ of \hat{S}_3 .

Eigenstates of phase is a unitary transform (discrete Fourier transform) of these states ($B \in \mathbb{R}$ in the following)

$$|\phi_k\rangle = \frac{1}{\sqrt{2j+1}} \sum_{m=-j}^{j} e^{-imB\phi_k} |m\rangle, \quad \phi_k = \frac{2\pi k}{B(2j+1)}, \quad k = -j, \cdots, j$$

(D) (A) (A) (A) (A)

SU(2) spin *j* and phase operator I

SU(2) group generated by hermitian operators \hat{S}_i , i = 1, 2, 3 admit 2j + 1 (finite) dimensional representations for $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$. A basis for the vector space consist of the eigenstates $|m\rangle$, $m = -j, -j + 1, \cdots, j - 1, j$ of \hat{S}_3 .

Eigenstates of phase is a unitary transform (discrete Fourier transform) of these states ($B \in \mathbb{R}$ in the following)

$$\begin{aligned} |\phi_k\rangle &= \frac{1}{\sqrt{2j+1}} \sum_{m=-j}^{j} e^{-imB\phi_k} |m\rangle, \quad \phi_k &= \frac{2\pi k}{B(2j+1)}, \quad k = -j, \cdots, j \\ \langle \phi_{k'} | \phi_k \rangle &= \frac{1}{2j+1} \sum_{m=-i}^{j} e^{-imB(\phi_k - \phi_{k'})} = \delta_{k,k'} \end{aligned}$$

イロト イポト イヨト イヨト 二日

SU(2) spin *j* and phase operator I

SU(2) group generated by hermitian operators \hat{S}_i , i = 1, 2, 3 admit 2j + 1 (finite) dimensional representations for $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$. A basis for the vector space consist of the eigenstates $|m\rangle$, $m = -j, -j + 1, \cdots, j - 1, j$ of \hat{S}_3 .

Eigenstates of phase is a unitary transform (discrete Fourier transform) of these states ($B \in \mathbb{R}$ in the following)

$$\begin{aligned} |\phi_k\rangle &= \frac{1}{\sqrt{2j+1}} \sum_{m=-j}^{j} e^{-imB\phi_k} |m\rangle, \quad \phi_k &= \frac{2\pi k}{B(2j+1)}, \quad k = -j, \cdots, j \\ \langle \phi_{k'} |\phi_k\rangle &= \frac{1}{2j+1} \sum_{m=-j}^{j} e^{-imB(\phi_k - \phi_{k'})} = \delta_{k,k'} \end{aligned}$$

Eigenvalues ϕ_k defined mod $\frac{2\pi}{B}$.

(D) (A) (A) (A) (A)

SU(2) spin *j* and phase operator II

Define the phase operator 'conjugate' to \hat{S}_3 by spectral decomposition:

$$\hat{\phi} = \sum_{k=-j}^{j} \phi_k \, |\phi_k\rangle \langle \phi_k|$$

[Pegg-Barnett], [Agarwal-Simon]

イロト 不得下 イヨト イヨト
SU(2) spin *j* and phase operator II

Define the phase operator 'conjugate' to \hat{S}_3 by spectral decomposition:

$$\hat{\phi} = \sum_{k=-j}^{j} \phi_k \, |\phi_k\rangle \langle \phi_k|$$

[Pegg-Barnett], [Agarwal-Simon] This is true in a limited sense:

$$e^{-\beta B\hat{S}_{3}}\hat{\phi}e^{\beta B\hat{S}_{3}} = \sum_{k=-j}^{j} \frac{\phi_{k}}{2j+1} \sum_{m=-j}^{j} \sum_{m'=-j}^{j} e^{-im(\phi_{k}-i\beta)B+im'(\phi_{k}-i\beta)B} |m\rangle\langle m'|$$

for $\beta \in \mathbb{C}$.

イロト 不得下 イヨト イヨト

SU(2) spin *j* and phase operator II

Define the phase operator 'conjugate' to \hat{S}_3 by spectral decomposition:

$$\hat{\phi} = \sum_{k=-j}^{j} \phi_k \, |\phi_k\rangle \langle \phi_k|$$

[Pegg-Barnett], [Agarwal-Simon] This is true in a limited sense:

$$e^{-\beta B\hat{S}_{3}}\hat{\phi} e^{\beta B\hat{S}_{3}} = \sum_{k=-j}^{j} \frac{\phi_{k}}{2j+1} \sum_{m=-j}^{j} \sum_{m'=-j}^{j} e^{-im(\phi_{k}-i\beta)B+im'(\phi_{k}-i\beta)B} |m\rangle\langle m'|$$

for $\beta \in \mathbb{C}$. Two cases:

For $i\beta = \frac{2\pi n}{B}$ ($n \in \mathbb{Z}$ —this includes $\beta = 0$) it is a trivial identity.

SU(2) spin *j* and phase operator II

Define the phase operator 'conjugate' to \hat{S}_3 by spectral decomposition:

$$\hat{\phi} = \sum_{k=-j}^{j} \phi_k \, |\phi_k\rangle \langle \phi_k|$$

[Pegg-Barnett], [Agarwal-Simon] This is true in a limited sense:

$$e^{-\beta B\hat{S}_{3}}\hat{\phi} e^{\beta B\hat{S}_{3}} = \sum_{k=-j}^{j} \frac{\phi_{k}}{2j+1} \sum_{m=-j}^{j} \sum_{m'=-j}^{j} e^{-im(\phi_{k}-i\beta)B+im'(\phi_{k}-i\beta)B} |m\rangle\langle m'|$$

for $\beta \in \mathbb{C}$. Two cases:

- For $i\beta = \frac{2\pi n}{B}$ ($n \in \mathbb{Z}$ —this includes $\beta = 0$) it is a trivial identity.
- ► For $i\beta = \frac{2\pi k'}{B(2j+1)} + \frac{2\pi n}{B}$, where $0 \neq k' = -j, \dots, j$ and $n \in \mathbb{Z}$ (this means that $i\beta$ is a difference between the phase eigenvalues (mod $2\pi/B$)), then $\phi_k i\beta$ is again an allowed eigenvalue of the phase operator (mod $2\pi/B$).

SU(2) spin *j* and phase operator III

In the second case adding and subtracting $i\beta$ to the eigenvalue ϕ_k and using the completeness of basis

$$e^{-\beta B\hat{S}_3}\hat{\phi} e^{\beta B\hat{S}_3} = \hat{\phi} + i\beta$$
(only for $0 \neq \beta = -\frac{2\pi i j}{B(2j+1)}, \cdots, \frac{2\pi i j}{B(2j+1)} \mod 2\pi/B$).

イロト イヨト イヨト イヨト

SU(2) spin *j* and phase operator III

In the second case adding and subtracting $i\beta$ to the eigenvalue ϕ_k and using the completeness of basis

$$e^{-\beta B\hat{S}_{3}}\hat{\phi}\,e^{\beta B\hat{S}_{3}}=\hat{\phi}+i\beta$$

(only for $0 \neq \beta = -\frac{2\pi i j}{B(2j+1)}, \cdots, \frac{2\pi i j}{B(2j+1)} \mod 2\pi/B$).

This *shift covariance relation* [Busch-Grabowski-Lahti] may be rewritten as a commutator

$$[\hat{\phi}, e^{\beta B \hat{S}_3}] = i\beta \, e^{\beta B \hat{S}_3}$$

only at these infinite number of special imaginary values of β .

Outline

Motivation

Phase operator

A simple model in statistical mechanics

Phase operators related to the ζ -function

イロン イヨン イヨン イヨン

Non-interacting spins is an external magnetic field

Take a one-dimensional lattice: at the *n*-th site there is an SU(2) spin σ_n which takes values in the spin-*j* representation. These are subjected to a local magnetic field B_n (along the third direction). If the spins are non-interacting (or the magnetic field is strong compared to the spin-spin interactions) the Hamiltonian is $H = -\sum_n B_n S_3^{(n)}$. Hence the energy at the *n*-th site is $E_n = -B_n \sigma_n$.

イロト イポト イヨト イヨト

Non-interacting spins is an external magnetic field

Take a one-dimensional lattice: at the *n*-th site there is an SU(2) spin σ_n which takes values in the spin-*j* representation. These are subjected to a local magnetic field B_n (along the third direction). If the spins are non-interacting (or the magnetic field is strong compared to the spin-spin interactions) the Hamiltonian is $H = -\sum_n B_n S_3^{(n)}$. Hence the energy at the *n*-th site is $E_n = -B_n \sigma_n$.

Since the inter-spin interactions are negligible, the partition function of the system is the product of the partition functions at each site

$$Z_n = \mathrm{Tr} \mathrm{e}^{-\beta H_n} = \sum_{\sigma_n} \mathrm{e}^{\beta B_n \sigma_n} = \sum_{m=-j}^{J} \mathrm{e}^{\beta B_n m}$$

イロト イポト イヨト イヨト

Fisher zeroes

At special values of the inverse temperature $i\beta = \frac{2\pi m}{B_n(2j+1)} \pmod{\frac{2\pi}{B_n}}$ where $m \in \{-j, \dots, j\}$ but $m \neq 0$ the partition function vanishes!

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

Fisher zeroes

At special values of the inverse temperature $i\beta = \frac{2\pi m}{B_n(2j+1)} \pmod{\frac{2\pi}{B_n}}$ where $m \in \{-j, \dots, j\}$ but $m \neq 0$ the partition function vanishes! This is consistent with the trace of the shift covariance relation.

Fisher zeroes

At special values of the inverse temperature $i\beta = \frac{2\pi m}{B_n(2j+1)} \pmod{\frac{2\pi}{B_n}}$ where $m \in \{-j, \dots, j\}$ but $m \neq 0$ the partition function vanishes! This is consistent with the trace of the shift covariance relation. These zeroes of the partition function in the complex β -plane are called *Fisher zeroes*.

Exactly at these values, the resolvent of the exponential of the phase operator

$$\hat{\mathcal{R}}[\hat{\phi}](\phi) = \left(1 - e^{-i\phi}e^{i\hat{\phi}}
ight)^{-1}$$

has poles (as a function of $z = e^{i\phi}$).

Dressing the spin model

Let us label the sites of the one-dimensional lattice by the first p prime numbers $p = 2, 3, 5, \dots, p$: at the *p*-th site there is a spin-*j* valued SU(2) spin σ_p . [Spector]

イロト イポト イヨト イヨト

Dressing the spin model

Let us label the sites of the one-dimensional lattice by the first p prime numbers $p = 2, 3, 5, \dots, p$: at the *p*-th site there is a spin-*j* valued SU(2) spin σ_p . [Spector] Let us also shift the zero of the energy so that the Hamiltonian is $H = -\sum_{p} B_p \left(\hat{S}_3^{(p)} + j \mathbf{1} \right)$. The eigenvalues of $\hat{N}_p = \hat{S}_3^{(p)} + j \mathbf{1}$ are integers $0, 1, \dots, n = 2j + 1$.

イロト イポト イヨト イヨト

Dressing the spin model

Let us label the sites of the one-dimensional lattice by the first p prime numbers $p = 2, 3, 5, \dots, p$: at the *p*-th site there is a spin-*j* valued SU(2) spin σ_p . [Spector]

Let us also shift the zero of the energy so that the Hamiltonian is $H = -\sum_{p} B_{p} \left(\hat{S}_{3}^{(p)} + j\mathbf{1} \right)$. The eigenvalues of $\hat{N}_{p} = \hat{S}_{3}^{(p)} + j\mathbf{1}$ are integers $0, 1, \dots, n = 2j + 1$.

Since the spins are non-interacting, the phase operator $\hat{\phi}_p$ at the *p*-th site satisfies the shift covariance relation

$$[\hat{\phi}_{p}, e^{\beta \sum_{2}^{\mathfrak{p}} B_{p} \hat{N}_{p}}] = i\beta e^{\beta \sum_{2}^{\mathfrak{p}} B_{p} \hat{N}_{p}}$$

only for the special values $\beta = \frac{2\pi i k}{B_p(\mathfrak{n}+1)} \pmod{2\pi/B_p}$ with $k = 1, \dots, \mathfrak{n}$ and $p = 2, \dots, \mathfrak{p}$.

A special choice of the magnetic field

Let us choose the local magnetic field as $B_p = \ln p$. The partition function is

$$Z(\beta) = \prod_{p=2}^{p} \left(\sum_{m_{p}=0}^{n} e^{\beta m_{p} \ln p} \right) = \prod_{p=2}^{p} \frac{1 - p^{\beta(n+1)}}{1 - p^{\beta}}$$

・ロト ・回ト ・ヨト ・ヨト

A special choice of the magnetic field

Let us choose the local magnetic field as $B_p = \ln p$. The partition function is

$$Z(\beta) = \prod_{p=2}^{p} \left(\sum_{m_{p}=0}^{n} e^{\beta m_{p} \ln p} \right) = \prod_{p=2}^{p} \frac{1 - p^{\beta(n+1)}}{1 - p^{\beta}}$$

In the thermodynamic limit $\mathfrak{p} \to \infty$ (formal?)

$$Z(\beta) = \lim_{\mathfrak{p} \to \infty} \prod_{p=2}^{\mathfrak{p}} \frac{1 - p^{\beta(\mathfrak{n}+1)}}{1 - p^{\beta}} = \frac{\zeta(-\beta)}{\zeta(-(\mathfrak{n}+1)\beta)}$$

a ratio of the Riemann zeta functions. (Note: n may be *finite*.)

・ロト ・四ト ・ヨト ・ヨト

A special choice of the magnetic field

Let us choose the local magnetic field as $B_p = \ln p$. The partition function is

$$Z(\beta) = \prod_{p=2}^{\mathfrak{p}} \left(\sum_{m_p=0}^{\mathfrak{n}} e^{\beta m_p \ln p} \right) = \prod_{p=2}^{\mathfrak{p}} \frac{1 - p^{\beta(\mathfrak{n}+1)}}{1 - p^{\beta}}$$

In the thermodynamic limit $\mathfrak{p} \to \infty$ (formal?)

$$Z(\beta) = \lim_{\mathfrak{p} \to \infty} \prod_{p=2}^{\mathfrak{p}} \frac{1 - p^{\beta(\mathfrak{n}+1)}}{1 - p^{\beta}} = \frac{\zeta(-\beta)}{\zeta(-(\mathfrak{n}+1)\beta)}$$

a ratio of the Riemann zeta functions. (Note: n may be *finite*.) This has the exact same form as the partition functions of a κ -parafermionic primon gas of [Julia] and [Bakas-Bowick] with $\kappa = n + 1$ and $s = -\beta$. It would be interesting to try to relate the parafermionic variables to the spin degrees of freedom.

D Ghoshal (JNU) Phase operator on $L^2(Q_p)$ and the zeroes of its resolved

Comments

Z(β) has zeroes at the non-trivial zeroes of ζ(−β) (from the numerator),

(日) (四) (三) (三) (三)

Comments

- Z(β) has zeroes at the non-trivial zeroes of ζ(−β) (from the numerator),
- ► also at β = -1/(n + 1) (from the pole of ζ (-(n + 1)β) in the denominator). This is the *only* real zero—it is at an unphysical value of the (inverse) temperature.

Comments

- Z(β) has zeroes at the non-trivial zeroes of ζ(−β) (from the numerator),
- ▶ also at β = −1/(n + 1) (from the pole of ζ (−(n + 1)β) in the denominator). This is the *only* real zero—it is at an unphysical value of the (inverse) temperature.
- The trivial zeroes of $\zeta(-\beta)$ are *not* zeroes of the partition function.

Comments

- Z(β) has zeroes at the non-trivial zeroes of ζ(−β) (from the numerator),
- ▶ also at β = −1/(n + 1) (from the pole of ζ (−(n + 1)β) in the denominator). This is the *only* real zero—it is at an unphysical value of the (inverse) temperature.
- The trivial zeroes of $\zeta(-\beta)$ are *not* zeroes of the partition function.
- There are additional poles (from the zeroes of the ζ-function in the denominator).

Comments

- Z(β) has zeroes at the non-trivial zeroes of ζ(−β) (from the numerator),
- ▶ also at β = -1/(n + 1) (from the pole of ζ (-(n + 1)β) in the denominator). This is the *only* real zero—it is at an unphysical value of the (inverse) temperature.
- The trivial zeroes of $\zeta(-\beta)$ are *not* zeroes of the partition function.
- There are additional poles (from the zeroes of the ζ-function in the denominator).
- the nontrivial zeroes are the Fisher zeroes in the complex β-plane. They do not have an accumulation point on the real line. Also conjecturally the zeroes of the ζ-function are isolated. So these zeroes are not related to any phase transition—consistent with what is expected physically.

Analyticity of the PF

The *spectrum of the phase operator* is encoded in the trace of its resolvent:

$$\sum_{p=2}^{p} \sum_{n_{p} \in \mathbb{Z}} \sum_{k_{p}=0}^{n} \frac{1}{1 - e^{i\phi_{k_{p}} + i\frac{2\pi n_{p}}{\ln p} - i\phi}} - \sum_{p,n_{p}} \frac{1}{1 - e^{i\frac{2\pi n_{p}}{\ln p} - i\phi}}$$

(the subtracted term is the pole due to k = 0).

イロン イヨン イヨン イヨン

э

Analyticity of the PF

The *spectrum of the phase operator* is encoded in the trace of its resolvent:

$$\sum_{p=2}^{p} \sum_{n_{p} \in \mathbb{Z}} \sum_{k_{p}=0}^{n} \frac{1}{1 - e^{i\phi_{k_{p}} + i\frac{2\pi n_{p}}{\ln p} - i\phi}} - \sum_{p,n_{p}} \frac{1}{1 - e^{i\frac{2\pi n_{p}}{\ln p} - i\phi}}$$

(the subtracted term is the pole due to k = 0). Using Mittag-Leffler theorem, assuming analyticity, we can rewrite (the singular part of it) as

$$pprox -irac{d}{d\phi}\lnigg(\prod_{
ho=2}^{\mathfrak{p}}rac{1-p^{-(\mathfrak{n}+1)i\phi}}{1-p^{-i\phi}}igg)$$

イロト イポト イヨト イヨト

Analyticity of the PF

The *spectrum of the phase operator* is encoded in the trace of its resolvent:

$$\sum_{p=2}^{p} \sum_{n_{p} \in \mathbb{Z}} \sum_{k_{p}=0}^{n} \frac{1}{1 - e^{i\phi_{k_{p}} + i\frac{2\pi n_{p}}{\ln p} - i\phi}} - \sum_{p,n_{p}} \frac{1}{1 - e^{i\frac{2\pi n_{p}}{\ln p} - i\phi}}$$

(the subtracted term is the pole due to k = 0). Using Mittag-Leffler theorem, assuming analyticity, we can rewrite (the singular part of it) as

$$\approx -i\frac{d}{d\phi} \ln\left(\prod_{p=2}^{\mathfrak{p}} \frac{1-p^{-(\mathfrak{n}+1)i\phi}}{1-p^{-i\phi}}\right) \text{ In the } \mathfrak{p} \to \infty \text{ limit} \\ -i\frac{d}{d\phi} \ln\left(\frac{\zeta(i\phi)}{\zeta((\mathfrak{n}+1)i\phi)}\right) \text{ for } \operatorname{Re}(i\phi) > 1.$$

イロト イポト イヨト イヨト

Analyticity of the PF

The *spectrum of the phase operator* is encoded in the trace of its resolvent:

$$\sum_{p=2}^{p} \sum_{n_{p} \in \mathbb{Z}} \sum_{k_{p}=0}^{n} \frac{1}{1 - e^{i\phi_{k_{p}} + i\frac{2\pi n_{p}}{\ln p} - i\phi}} - \sum_{p,n_{p}} \frac{1}{1 - e^{i\frac{2\pi n_{p}}{\ln p} - i\phi}}$$

(the subtracted term is the pole due to k = 0). Using Mittag-Leffler theorem, assuming analyticity, we can rewrite (the singular part of it) as

 $\approx -i\frac{d}{d\phi}\ln\left(\prod_{p=2}^{\mathfrak{p}}\frac{1-p^{-(\mathfrak{n}+1)i\phi}}{1-p^{-i\phi}}\right) \text{ In the } \mathfrak{p} \to \infty \text{ limit}$ $-i\frac{d}{d\phi}\ln\left(\frac{\zeta(i\phi)}{\zeta((\mathfrak{n}+1)i\phi)}\right) \text{ for } \operatorname{Re}(i\phi) > 1. \text{ This is related to the partition function of the 'spin model'.}$

Outline

Motivation

Phase operator

A simple model in statistical mechanics

Phase operators related to the ζ -function

イロン イヨン イヨン イヨン

Incommensurate periodicities

We have a phase operator for each site—that is too many. The sum $\sum_{p} \hat{\phi}_{p}$ does not have the desired shift covariance relation. (Because the site dependence of the magnetic field $B_{p} = \ln p$ leads to incommensurate periodicity.)

・ロト ・四ト ・ヨト

Incommensurate periodicities

We have a phase operator for each site—that is too many. The sum $\sum_{p} \hat{\phi}_{p}$ does not have the desired shift covariance relation. (Because the site dependence of the magnetic field $B_{p} = \ln p$ leads to incommensurate periodicity.)

Aggregate phase operator φ : on the state $\bigotimes_p |\phi_{p,k_p}\rangle$ it acts as $e^{i\hat{\phi}_p}$ if **one, and only one**, of the eigenvalues $\phi_p \neq 0$, otherwise this operator acts as the identity.

$$e^{i\varphi} = \sum_{p=2}^{\mathfrak{p}} e^{i\hat{\phi}_{p}} \prod_{q\neq p} \delta_{\phi_{q},0} + \frac{2}{n_{\neq 0}(n_{\neq 0}-1)} \sum_{p_{1},p_{2}=1}^{\mathfrak{p}} \prod_{p_{1}\neq p_{2}} (1-\delta_{\phi_{p_{1}},0})(1-\delta_{\phi_{p_{2}},0})$$

where $n_{\neq 0} = \sum_{p} (1 - \delta_{\phi_{p},0})$ is the number of sites where the phase is non-zero. Eigenvalues are in $\bigcup_{p} U(1)$ (and not in $(U(1))^{p}$.

<ロ> (四) (四) (注) (注) (注) (注)

Incommensurate periodicities

We have a phase operator for each site—that is too many. The sum $\sum_{p} \hat{\phi}_{p}$ does not have the desired shift covariance relation. (Because the site dependence of the magnetic field $B_{p} = \ln p$ leads to incommensurate periodicity.)

Aggregate phase operator φ : on the state $\bigotimes_p |\phi_{p,k_p}\rangle$ it acts as $e^{i\hat{\phi}_p}$ if **one, and only one**, of the eigenvalues $\phi_p \neq 0$, otherwise this operator acts as the identity.

$$e^{i\varphi} = \sum_{p=2}^{\mathfrak{p}} e^{i\hat{\phi}_{p}} \prod_{q \neq p} \delta_{\phi_{q},0} + \frac{2}{n_{\neq 0}(n_{\neq 0}-1)} \sum_{p_{1},p_{2}=1}^{\mathfrak{p}} \prod_{p_{1}\neq p_{2}} (1-\delta_{\phi_{p_{1}},0})(1-\delta_{\phi_{p_{2}},0})$$

where $n_{\neq 0} = \sum_{p} (1 - \delta_{\phi_{p},0})$ is the number of sites where the phase is non-zero. Eigenvalues are in $\bigcup_{p} U(1)$ (and not in $(U(1))^{p}$. Alternatively, project on a subspace, in which only one, and exactly one, phase is different from zero and use the total phase operator in this subspace.

Aggregate phase operator

The aggregate phase operator can be shown to satisfy

 $\left[\varphi, \Pi_1 e^{-\beta H} \Pi_1\right] = i\beta \,\Pi_1 e^{-\beta H} \Pi_1$

which holds in the subspace (to which we project by Π_1) for all $\beta = \frac{2\pi k}{B_p(n+1)} \pmod{2\pi/B_p}$ where $k = 1, \dots, n$ and $p = 2, \dots, p$.

Aggregate phase operator

The aggregate phase operator can be shown to satisfy

 $\left[\boldsymbol{\varphi}, \Pi_1 e^{-\beta H} \Pi_1\right] = i\beta \, \Pi_1 e^{-\beta H} \Pi_1$

which holds in the subspace (to which we project by Π_1) for all $\beta = \frac{2\pi k}{B_p(n+1)} \pmod{2\pi/B_p}$ where $k = 1, \dots, n$ and $p = 2, \dots, p$. Note: In several examples in quantum theory, the domain of the canonical commutator is not the entire Hilbert space.

Aggregate phase operator

The aggregate phase operator can be shown to satisfy

 $\left[\boldsymbol{\varphi}, \Pi_1 e^{-\beta H} \Pi_1\right] = i\beta \, \Pi_1 e^{-\beta H} \Pi_1$

which holds in the subspace (to which we project by Π_1) for all $\beta = \frac{2\pi k}{B_p(n+1)} \pmod{2\pi/B_p}$ where $k = 1, \dots, n$ and $p = 2, \dots, p$. Note: In several examples in quantum theory, the domain of the canonical commutator is not the entire Hilbert space. In the limit $p \to \infty$, a closure of this subspace to obtain a closed subspace will be necessary.

Aggregate phase operator

The aggregate phase operator can be shown to satisfy

 $\left[\boldsymbol{\varphi}, \Pi_1 e^{-\beta H} \Pi_1\right] = i\beta \, \Pi_1 e^{-\beta H} \Pi_1$

which holds in the subspace (to which we project by Π_1) for all $\beta = \frac{2\pi k}{B_p(n+1)} \pmod{2\pi/B_p}$ where $k = 1, \dots, n$ and $p = 2, \dots, p$. Note: In several examples in quantum theory, the domain of the canonical commutator is not the entire Hilbert space. In the limit $p \to \infty$, a closure of this subspace to obtain a closed subspace will be necessary. Except for a pole at $\phi = 0$, the analytic properties of the trace of the resolvent of the aggregate phase operator are related to that of the partition function.

Another proposal: a simple example

In the basis of eigenstates $\{|n\rangle\}~(n=0,1,\cdots,\mathfrak{n})$ of the number operator $\hat{N},$ define

$$\hat{\Phi} = \sum_{m \neq n} \frac{i |m\rangle \langle n|}{m - n}$$

<ロ> (四) (四) (三) (三) (三)

Another proposal: a simple example

In the basis of eigenstates $\{|n\rangle\}~(n=0,1,\cdots,\mathfrak{n})$ of the number operator $\hat{N},$ define

$$\hat{\Phi} = \sum_{m \neq n} \frac{i |m\rangle \langle n|}{m - n}$$

This is a $(n + 1) \times (n + 1)$ hermitian Toeplitz matrix.

(日) (四) (三) (三) (三)
Another proposal: a simple example

In the basis of eigenstates $\{|n\rangle\}$ $(n = 0, 1, \dots, n)$ of the number operator \hat{N} , define

$$\hat{\Phi} = \sum_{m \neq n} \frac{i |m\rangle \langle n|}{m - n}$$

This is a $(n + 1) \times (n + 1)$ hermitian Toeplitz matrix. On a state $|\mathbf{v}\rangle = \sum_n v_n |n\rangle$

$$[\hat{\Phi}, \hat{N}] | \mathbf{v}
angle = i | \mathbf{v}
angle$$
 if and only if $\sum_{n=0}^{n} v_n = 0$

<ロ> (四) (四) (三) (三) (三)

Another proposal: a simple example

In the basis of eigenstates $\{|n\rangle\}$ $(n = 0, 1, \dots, n)$ of the number operator \hat{N} , define

$$\hat{\Phi} = \sum_{m \neq n} \frac{i |m\rangle \langle n|}{m - n}$$

This is a $(n + 1) \times (n + 1)$ hermitian Toeplitz matrix. On a state $|\mathbf{v}\rangle = \sum_n v_n |n\rangle$

$$[\hat{\Phi}, \hat{N}] | \mathbf{v}
angle = i | \mathbf{v}
angle$$
 if and only if $\sum_{n=0}^{n} v_n = 0$

The commutator holds in a codimension one subspace. E.g., v_n s can be the nontrivial (n + 1)-th roots of unity. [Galindo]

Local ζ_p -function as trace

The local factors $\zeta_p(s) = 1/(1-p^{-s}) = \sum_{m=0}^{\infty} p^{-sm}$ can be realised as the trace of the generalised Vladimirov derivative $D_{(p)}^{-s}$ in $L^2(p^{-1}\mathbb{Z}_p) \subset L^2(\mathbb{Q}_p)$.

Local ζ_p -function as trace

The local factors $\zeta_p(s) = 1/(1-p^{-s}) = \sum_{m=0}^{\infty} p^{-sm}$ can be realised as the trace of the generalised Vladimirov derivative $D_{(p)}^{-s}$ in $L^2(p^{-1}\mathbb{Z}_p) \subset L^2(\mathbb{Q}_p)$.

It is spanned by the orthonormal set of its eigenfunctions which are the Kozyrev wavelets (locally constant, mean zero, complex valued functions with compact support in \mathbb{Q}_p).

Local ζ_p -function as trace

The local factors $\zeta_p(s) = 1/(1-p^{-s}) = \sum_{m=0}^{\infty} p^{-sm}$ can be realised as the trace of the generalised Vladimirov derivative $D_{(p)}^{-s}$ in $L^2(p^{-1}\mathbb{Z}_p) \subset L^2(\mathbb{Q}_p)$.

It is spanned by the orthonormal set of its eigenfunctions which are the Kozyrev wavelets (locally constant, mean zero, complex valued functions with compact support in \mathbb{Q}_p).

The eigenvalues are labelled by integers $n_{(p)} \in \mathbb{Z}$. Corresponding eigenstates are denoted by $|n_{(p)}\rangle$. More details in the next talk by Dutta.

(ロ) (部) (E) (E) (E)

Local phase operator on $L^2(p^{-1}\mathbb{Z}_p)$

For a fixed value of p, the local phase operator

$$\frac{i}{\ln \rho} \sum_{\substack{n_{a}^{(p)} \neq n_{b}^{(p)}}} \frac{\left|\mathbf{n}_{a}^{(p)}\right\rangle \left\langle \mathbf{n}_{b}^{(p)}\right|}{\left(n_{a}^{(p)} - n_{b}^{(p)}\right)}$$

イロト イポト イヨト イヨト

with $n_{(p)} \ge 0$ acts on $L^2(p^{-1}\mathbb{Z}_p)$.

Local phase operator on $L^2(p^{-1}\mathbb{Z}_p)$

For a fixed value of p, the local phase operator $\frac{1}{|r|}$

$$\frac{i}{n p} \sum_{\substack{n_a^{(p)} \neq n_b^{(p)}}} \frac{|\mathbf{n}_a^{(p)}\rangle \langle \mathbf{n}_b^{(p)}|}{(n_a^{(p)} - n_b^{(p)})}$$

with $n_{(p)} \ge 0$ acts on $L^2(p^{-1}\mathbb{Z}_p)$. This is a Toeplitz matrix—its eigenvectors $|k_{(p)}\rangle$ can (in principle) be found.

イロト イポト イヨト イヨト

Local phase operator on $L^2(p^{-1}\mathbb{Z}_p)$

For a fixed value of *p*, the local phase operator $\frac{i}{\ln p} \sum_{\substack{n_a^{(p)} \neq n_c^{(p)}}} \frac{|\mathbf{n}_a^{(p)}\rangle \langle \mathbf{n}_b^{(p)}|}{(n_a^{(p)} - n_b^{(p)})}$

with $n_{(p)} \ge 0$ acts on $L^2(p^{-1}\mathbb{Z}_p)$. This is a Toeplitz matrix—its eigenvectors $|k_{(p)}\rangle$ can (in principle) be found.

For the full space $\otimes_p L^2(p^{-1}\mathbb{Z}_p)$, we use prime factorisation

$$n = \prod_{p} p^{n_{(p)}} \iff |\mathbf{n}\rangle = \otimes_{p} |n_{(p)}\rangle$$

These are (orthonormal) eigenfunctions of the Hamiltonian is $H = \sum_{p} \ln p N_{(p)}$

$$H|\mathbf{n}\rangle = \sum_{p} n_{(p)} \ln p |\mathbf{n}\rangle = \ln n |\mathbf{n}\rangle$$

イロト イポト イヨト イヨト

Proposed Toeplitz type phase operator

Take a *finite* linear combination of the form $|\mathbf{v}\rangle = \sum_{\mathbf{n}} v_{\mathbf{n}} |\mathbf{n}\rangle$. Further, we require that $v_{\mathbf{n}} \equiv v_{(n_{(2)},n_{(3)},\cdots)} = \prod_{p} v_{n_{(p)}}$, i.e., the coefficients factorise.

Proposed Toeplitz type phase operator

Take a *finite* linear combination of the form $|\mathbf{v}\rangle = \sum_{\mathbf{n}} v_{\mathbf{n}} |\mathbf{n}\rangle$. Further, we require that $v_{\mathbf{n}} \equiv v_{(n_{(2)},n_{(3)},\cdots)} = \prod_{p} v_{n_{(p)}}$, i.e., the coefficients factorise. Let $\mathbf{n} = \max_{p} \{n^{(p)}\}$. There is also a highest prime \mathbf{p} , above which all $n^{(p>\mathbf{p})} = 0$ in the factorisations.

イロト イポト イヨト イヨト

Proposed Toeplitz type phase operator

Take a *finite* linear combination of the form $|\mathbf{v}\rangle = \sum_{n} v_{n} |\mathbf{n}\rangle$. Further, we require that $v_{\mathbf{n}} \equiv v_{(n_{(2)},n_{(3)},\cdots)} = \prod_{p} v_{n_{(p)}}$, i.e., the coefficients factorise. Let $\mathbf{n} = \max_{p} \{n^{(p)}\}$. There is also a highest prime \mathbf{p} , above which all $n^{(p>\mathbf{p})} = 0$ in the factorisations.

$$\Phi_{\text{tot}} = \begin{cases} \sum_{\substack{n_a^{(p)}, n_b^{(p)} = 0 \\ \text{not all } n_a^{(p)} = n_b^{(p)} \\ \\ & \bigotimes_{p > p} |n_{(p)} = 0 \rangle \langle n_{(p)} = 0| \end{cases} & \text{for } n_a^{(p)} | n_b^{(p)} \leq \mathfrak{n} \end{cases}$$

イロト イポト イヨト イヨト

Proposed Toeplitz type phase operator

Take a *finite* linear combination of the form $|\mathbf{v}\rangle = \sum_{n} v_{n} |\mathbf{n}\rangle$. Further, we require that $v_{\mathbf{n}} \equiv v_{(n_{(2)},n_{(3)},\cdots)} = \prod_{p} v_{n_{(p)}}$, i.e., the coefficients factorise. Let $\mathbf{n} = \max_{p} \{ n^{(p)} \}$. There is also a highest prime \mathbf{p} , above which all $n^{(p>\mathbf{p})} = 0$ in the factorisations.

$$\Phi_{\text{tot}} = \begin{cases} \sum_{\substack{n_a^{(p)}, n_b^{(p)} = 0 \\ \text{not all } n_a^{(p)} = n_b^{(p)} \\ \\ 0 \\ p > p \end{cases}} \frac{i\left(\bigotimes_{p_a \le p} |\mathbf{n}_i^{(p_a)}\rangle\right)\left(\bigotimes_{p_b \le p} \langle \mathbf{n}_b^{(p_b)}|\right)}{\sum_{p \le p} (n_a^{(p)} - n_b^{(p)})\ln p} & \text{for } n_a^{(p)}, n_b^{(p)} \le n \\ \\ \\ \bigotimes_{p > p} |n_{(p)} = 0\rangle\langle n_{(p)} = 0| & \text{otherwise} \end{cases}$$

For $p > \mathfrak{p}$, $|n_{(p)} = 0\rangle$ is the 'vacuum' state in the number representation.

Proposed Toeplitz type phase operator

Take a *finite* linear combination of the form $|\mathbf{v}\rangle = \sum_{n} v_{n} |\mathbf{n}\rangle$. Further, we require that $v_{\mathbf{n}} \equiv v_{(n_{(2)},n_{(3)},\cdots)} = \prod_{p} v_{n_{(p)}}$, i.e., the coefficients factorise. Let $\mathbf{n} = \max_{p} \{n^{(p)}\}$. There is also a highest prime \mathbf{p} , above which all $n^{(p>\mathbf{p})} = 0$ in the factorisations.

$$\Phi_{\text{tot}} = \begin{cases} \sum_{\substack{n_a^{(p)}, n_b^{(p)} = 0 \\ \text{not all } n_a^{(p)} = n_b^{(p)} \\ \\ & \bigotimes_{p > p} |n_{(p)} = 0 \rangle \langle n_{(p)} = 0| \end{cases} & \text{for } n_a^{(p)} | n_b \rangle & \text{for } n_a^{(p)}, n_b^{(p)} \leq \mathfrak{n} \end{cases}$$

For $p > \mathfrak{p}$, $|n_{(p)} = 0\rangle$ is the 'vacuum' state in the number representation. In the limit $\mathfrak{p} \to \infty$ this should be a well defined Toeplitz operator on $\otimes_p L^2(p^{-1}\mathbb{Z}_p)$. However, we do not have a proof.

ヘロト ヘポト ヘヨト ヘヨト

Extension to Dirichlet L-functions

Riemann ζ -function is a part of the family of Dirichlet *L*-functions, defined as the analytic continuation of the Dirichlet series

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \in \text{primes}} \frac{1}{1 - \chi(p)p^{-s}}, \qquad \text{Re}(s) > 1$$

(where $\chi(n) : (\mathbb{Z}/k\mathbb{Z})^* \to S^1$ is a Dirichlet character) to the complex *s*-plane.

Extension to Dirichlet L-functions

Riemann ζ -function is a part of the family of Dirichlet *L*-functions, defined as the analytic continuation of the Dirichlet series

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \in \text{primes}} \frac{1}{1 - \chi(p)p^{-s}}, \qquad \text{Re}(s) > 1$$

(where $\chi(n): (\mathbb{Z}/k\mathbb{Z})^* \to S^1$ is a Dirichlet character) to the complex *s*-plane. Just as in the case of ζ -function, the local factor $\frac{1}{1-\chi_k(p)p^{-s}} = \sum_{n_p=0}^{\infty} \chi_k(p)^{n_p} p^{-n_p s}$ is the trace (in $L^2(p^{-1}\mathbb{Z}_p)$) of a pseudodifferential operator, a Vladimirov-type derivative $D_{(p)y}^{-s}$ twisted by a Dirichlet character.

・ロト ・日本・ ・日本・ ・日本・

Extension to Dirichlet L-functions

Riemann ζ -function is a part of the family of Dirichlet *L*-functions, defined as the analytic continuation of the Dirichlet series

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \in \text{primes}} \frac{1}{1 - \chi(p)p^{-s}}, \qquad \text{Re}(s) > 1$$

(where $\chi(n): (\mathbb{Z}/k\mathbb{Z})^* \to S^1$ is a Dirichlet character) to the complex *s*-plane. Just as in the case of ζ -function, the local factor $\frac{1}{1-\chi_k(p)p^{-s}} = \sum_{n_p=0}^{\infty} \chi_k(p)^{n_p} p^{-n_p s}$ is the trace (in $L^2(p^{-1}\mathbb{Z}_p)$) of a pseudodifferential operator, a Vladimirov-type derivative $D_{(p)y}^{-s}$ twisted by a Dirichlet character.

Kozyrev wavelets are common set of eigenfuctions of all these (mutually commuting) Vladimirov type derivatives. Indeed the operators can be related by suitable unitary transformations Dutta-DG.

<ロ> (四) (四) (注) (注) (注) (注)

Extension to Dirichlet L-functions

Riemann ζ -function is a part of the family of Dirichlet *L*-functions, defined as the analytic continuation of the Dirichlet series

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \in \text{primes}} \frac{1}{1 - \chi(p)p^{-s}}, \qquad \text{Re}(s) > 1$$

(where $\chi(n): (\mathbb{Z}/k\mathbb{Z})^* \to S^1$ is a Dirichlet character) to the complex *s*-plane. Just as in the case of ζ -function, the local factor $\frac{1}{1-\chi_k(p)p^{-s}} = \sum_{n_p=0}^{\infty} \chi_k(p)^{n_p} p^{-n_p s}$ is the trace (in $L^2(p^{-1}\mathbb{Z}_p)$) of a pseudodifferential operator, a Vladimirov-type derivative $D_{(p)y}^{-s}$ twisted by a Dirichlet character.

Kozyrev wavelets are common set of eigenfuctions of all these (mutually commuting) Vladimirov type derivatives. Indeed the operators can be related by suitable unitary transformations Dutta-DG. The rest of the story is very similar—one can repeat all arguments almost *mutatis mutandis*—therefore, we skip the details.

D Ghoshal (JNU) Phase operator on $L^{2}(Q_{p})$ and the zeroes of its resolvent

Lack of uniqueness

A phase operator cannot be defined uniquely—it is ambiguous upto a similarity transform. [Galindo]

イロン イヨン イヨン イヨン

æ

Lack of uniqueness

A phase operator cannot be defined uniquely—it is ambiguous upto a similarity transform. [Galindo]

Given a phase operator $\hat{\phi}_{\alpha} = e^{-\alpha \hat{N}} \hat{\phi} e^{\alpha \hat{N}}$ is related by a similarity transform labelled by a parameter α .

・ロト ・聞ト ・ヨト ・ヨト

Lack of uniqueness

A phase operator cannot be defined uniquely—it is ambiguous upto a similarity transform. [Galindo]

Given a phase operator $\hat{\phi}_{\alpha}$ the operator $\hat{\phi}_{\alpha} = e^{-\alpha \hat{N}} \hat{\phi} e^{\alpha \hat{N}}$ is related by a similarity transform labelled by a parameter α .

Since the shift covariance relation holds only in a subspace of codimension one of the full Hilbert space, this statement is *not trivial* (as it would have been otherwise).

・ロト ・聞ト ・ヨト ・ヨト

Lack of uniqueness

A phase operator cannot be defined uniquely—it is ambiguous upto a similarity transform. [Galindo]

Given a phase operator $\hat{\phi}_{\alpha}$ the operator $\hat{\phi}_{\alpha} = e^{-\alpha \hat{N}} \hat{\phi} e^{\alpha \hat{N}}$ is related by a similarity transform labelled by a parameter α .

Since the shift covariance relation holds only in a subspace of codimension one of the full Hilbert space, this statement is *not trivial* (as it would have been otherwise).

By suitably choosing the coefficients that determine the subspace, and the parameter α , the phase operators related to the Riemann ζ - and the Dirichlet *L*-functions can be related by unitary transformations. Dutta-DG.

Conclusions

► Generalised Vladimirov derivative on the subspace L²(p⁻¹Z_p) of complex valued locally constant functions on Q_p is like the number operator in quantum simple harmonic oscillator.

・ロト ・四ト ・ヨト

э

Conclusions

- ► Generalised Vladimirov derivative on the subspace L²(p⁻¹Z_p) of complex valued locally constant functions on Q_p is like the number operator in quantum simple harmonic oscillator.
- Proposed to define a 'phase operator' conjugate to it (in an appropriately defined sense) on a subspace.

(D) (A) (A) (A) (A)

Conclusions

- ► Generalised Vladimirov derivative on the subspace L²(p⁻¹Z_p) of complex valued locally constant functions on Q_p is like the number operator in quantum simple harmonic oscillator.
- Proposed to define a 'phase operator' conjugate to it (in an appropriately defined sense) on a subspace.
- Futher discussed how to combine these for all primes (at physicists' level of rigour).

(D) (A) (A) (A) (A)

Conclusions

- ► Generalised Vladimirov derivative on the subspace L²(p⁻¹Z_p) of complex valued locally constant functions on Q_p is like the number operator in quantum simple harmonic oscillator.
- Proposed to define a 'phase operator' conjugate to it (in an appropriately defined sense) on a subspace.
- Futher discussed how to combine these for all primes (at physicists' level of rigour).
- Commented on the connection between the distribution of the eigenvalues of the resolvent function of this operator and the non-trivial zeroes of the Riemann zeta function.

Conclusions

- ► Generalised Vladimirov derivative on the subspace L²(p⁻¹Z_p) of complex valued locally constant functions on Q_p is like the number operator in quantum simple harmonic oscillator.
- Proposed to define a 'phase operator' conjugate to it (in an appropriately defined sense) on a subspace.
- Futher discussed how to combine these for all primes (at physicists' level of rigour).
- Commented on the connection between the distribution of the eigenvalues of the resolvent function of this operator and the non-trivial zeroes of the Riemann zeta function.
- Mentioned the extension to the Dirichlet L-functions.

・ロト ・四ト ・ヨト ・ヨト

Conclusions

- ► Generalised Vladimirov derivative on the subspace L²(p⁻¹Z_p) of complex valued locally constant functions on Q_p is like the number operator in quantum simple harmonic oscillator.
- Proposed to define a 'phase operator' conjugate to it (in an appropriately defined sense) on a subspace.
- Futher discussed how to combine these for all primes (at physicists' level of rigour).
- Commented on the connection between the distribution of the eigenvalues of the resolvent function of this operator and the non-trivial zeroes of the Riemann zeta function.
- Mentioned the extension to the Dirichlet L-functions.

Thank you!