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Riemann zeta function: infinite sum and product

Riemann ζ-function is one of the most enigmatic functions—it is related
to the prime numbers, plausibly via the Riemann hypothesis. Although
proving it would be a $$profitable$$ enterprise, it is beyond the scope of
this talk!

Euler defined the infinite sum ζ(s) =
∞∑

n=1

1
ns , which is convergent for

Re (s) > 1. He also gave the equivalent infinite product form

ζ(s) =
∏

p∈primes

1
(1− p−s)

=
∏

p∈primes

ζp(s)︸ ︷︷ ︸
local ζ-function

Riemann proposed to think of s as a complex variable and analytically
continued it as a meromorphic function on the s-plane.
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Riemann zeta as partition function

Motivated by the proposal of Hilbert and Polya, physicists have tried to
realise the zeta (and related functions) as the partition function
(∼ Tr e−βH) of a ‘physical’ quantum / statistical system.

Examples: • Primon gas [Spector], [Julia], [Bakas-Bowick], [Knauf]
• Quantum particle in one-dimension in a potential, e.g., [Wu-Sprung],
[Mussardo], [Mack et al]
• Random matrix model, e.g, [Bohigas et al] and our own ‘reverse
engineering approach’ via local factors A. Chattopadhyay, P. Dutta, S.
Dutta and DG, arXiv: 1807.07342 [math-ph]

ζ(s) ∼ TrH−
(
D−s)

D ∼
∏

p D(p): Vladimirov derivative, H− =
⊗

pH
(p)
− , where

H(p)
− = L2

(
p−1Zp

)
is a subspace of square integrable complex valued

functions on the p-adic space Qp spanned by the Kozyrev wavelets.
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Partition function and its zeroes: Yang-Lee and Fisher

Today we shall discuss statistical systems related to the Riemann zeta
(and Dirichlet L-) functions.

The partition function of a statistical system depend on a number of
parameters, such as the (inverse) temperature β = 1

kBT , externally
applied magnetic field B, etc.
The partition function is seen to have zeroes when it is analytically
continued to complex values of the parameters. Moreover, they lie along
specific curves in the complex B-plane (Yang-Lee) or in the complex
β-plane (Fisher).

We shall need a phase operator that is “canonically conjugate” (in a
limited sense) to the Hamiltonian.
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Classical phase and its quantum analogue: SHO

The spectra of our Hamiltonians are discrete. A familiar example of such
a system is the simple harmonic oscillator (SHO) described by the
Hamiltonian H = 1

2p
2 + 1

2ω
2x2.

Classical: (φ = ωt)

x =
1√
2

(
Ae iφ + A∗e−iφ)

p =
i√
2
ω
(
Ae iφ − A∗e−iφ)

H = ω2 |A|2

Quantum:

x̂ =

√
1
2ω
(
â + â†

)
p̂ = i

√
ω

2
(
â− â†

)
Ĥ = ω

(
a†a +

1
2

)
= ω

(
N̂ +

1
2

)

Correspondence
√
ωAe iφ → â ?

= e−iφ̂
√

N̂, â† ?
=
√

N̂e iφ̂
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SHO: a contradiction

If the purported phase operator φ̂ is hermitian, equivalently, e iφ̂ is
unitary, we get a contradiction.

Canonical commutation relation [x̂ , p̂] = i implies
[
â, â†

]
= 1.

Consequently[
N̂, e iφ̂

]
= e iφ̂,

[
φ̂, N̂

]
= i (canonically conjugate pair)

In the number state basis (eigenstates of the number operator N̂) the
commutator is

〈n| φ̂ |m〉 = −iδnm

which is inconsistent. [Susskind-Glogower]

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

SHO: a contradiction

If the purported phase operator φ̂ is hermitian, equivalently, e iφ̂ is
unitary, we get a contradiction.
Canonical commutation relation [x̂ , p̂] = i implies

[
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Some issues

I The operator exp(i φ̂) cannot be unitary.

I Phase is angle valued hence periodic: φ ∼ φ+ 2π.

I In the covering space R, the eigenvalues of φ̂ must have a
discontinuity.

I The eigenvalues of the number operator N̂ take only positive integer
values.

Similar issues are faced in defining an operator canonically
conjugate to one with a finite (discrete) spectrum.
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SU(2) spin j and phase operator I

SU(2) group generated by hermitian operators Ŝi , i = 1, 2, 3 admit 2j + 1
(finite) dimensional representations for j = 0, 1

2 , 1,
3
2 , · · ·.

A basis for the
vector space consist of the eigenstates |m〉, m = −j ,−j + 1, · · · , j − 1, j
of Ŝ3.
Eigenstates of phase is a unitary transform (discrete Fourier transform) of
these states (B ∈ R in the following)

|φk〉 =
1√

2j + 1

j∑
m=−j

e−imBφk |m〉, φk =
2πk

B(2j + 1)
, k = −j , · · · , j

〈φk′ |φk〉=
1

2j + 1

j∑
m=−j

e−imB(φk−φk′ ) = δk,k′

Eigenvalues φk defined mod 2π
B .
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of Ŝ3.
Eigenstates of phase is a unitary transform (discrete Fourier transform) of
these states (B ∈ R in the following)

|φk〉 =
1√

2j + 1

j∑
m=−j

e−imBφk |m〉, φk =
2πk

B(2j + 1)
, k = −j , · · · , j

〈φk′ |φk〉=
1

2j + 1

j∑
m=−j

e−imB(φk−φk′ ) = δk,k′

Eigenvalues φk defined mod 2π
B .

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

SU(2) spin j and phase operator I

SU(2) group generated by hermitian operators Ŝi , i = 1, 2, 3 admit 2j + 1
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(finite) dimensional representations for j = 0, 1

2 , 1,
3
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SU(2) spin j and phase operator II

Define the phase operator ‘conjugate’ to Ŝ3 by spectral decomposition:

φ̂ =

j∑
k=−j

φk |φk〉〈φk |

[Pegg-Barnett], [Agarwal-Simon]

This is true in a limited sense:

e−βBŜ3 φ̂ eβBŜ3 =

j∑
k=−j

φk

2j + 1

j∑
m=−j

j∑
m′=−j

e−im(φk−iβ)B+im′(φk−iβ)B |m〉〈m′|

for β ∈ C. Two cases:
I For iβ = 2πn

B (n ∈ Z—this includes β = 0) it is a trivial identity.

I For iβ = 2πk′
B(2j+1) + 2πn

B , where 0 6= k ′ = −j , · · · , j and n ∈ Z (this
means that iβ is a difference between the phase eigenvalues (mod
2π/B)), then φk − iβ is again an allowed eigenvalue of the phase
operator (mod 2π/B).
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e−βBŜ3 φ̂ eβBŜ3 =

j∑
k=−j

φk

2j + 1

j∑
m=−j

j∑
m′=−j

e−im(φk−iβ)B+im′(φk−iβ)B |m〉〈m′|

for β ∈ C. Two cases:
I For iβ = 2πn

B (n ∈ Z—this includes β = 0) it is a trivial identity.

I For iβ = 2πk′
B(2j+1) + 2πn

B , where 0 6= k ′ = −j , · · · , j and n ∈ Z (this
means that iβ is a difference between the phase eigenvalues (mod
2π/B)), then φk − iβ is again an allowed eigenvalue of the phase
operator (mod 2π/B).

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

SU(2) spin j and phase operator II

Define the phase operator ‘conjugate’ to Ŝ3 by spectral decomposition:
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SU(2) spin j and phase operator III

In the second case adding and subtracting iβ to the eigenvalue φk and
using the completeness of basis

e−βBŜ3 φ̂ eβBŜ3 = φ̂+ iβ

(only for 0 6= β = − 2πij
B(2j+1) , · · · ,

2πij
B(2j+1) mod 2π/B).

This shift covariance relation [Busch-Grabowski-Lahti] may be rewritten
as a commutator

[φ̂, eβBŜ3 ] = iβ eβBŜ3

only at these infinite number of special imaginary values of β.
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Non-interacting spins is an external magnetic field

Take a one-dimensional lattice: at the n-th site there is an SU(2) spin σn
which takes values in the spin-j representation. These are subjected to a
local magnetic field Bn (along the third direction).
If the spins are non-interacting (or the magnetic field is strong compared
to the spin-spin interactions) the Hamiltonian is H = −

∑
n BnS

(n)
3 .

Hence the energy at the n-th site is En = −Bnσn.

Since the inter-spin interactions are negligible, the partition function of
the system is the product of the partition functions at each site

Zn = Tre−βHn =
∑
σn

eβBnσn =

j∑
m=−j

eβBnm
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Fisher zeroes

At special values of the inverse temperature iβ = 2πm
Bn(2j+1) (mod 2π

Bn
)

where m ∈ {−j , · · · , j} but m 6= 0 the partition function vanishes!

This is
consistent with the trace of the shift covariance relation.
These zeroes of the partition function in the complex β-plane are called
Fisher zeroes.

Exactly at these values, the resolvent of the exponential of the phase
operator

R̂[φ̂](φ) =
(
1− e−iφe iφ̂

)−1

has poles (as a function of z = e iφ).
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Dressing the spin model

Let us label the sites of the one-dimensional lattice by the first p prime
numbers p = 2, 3, 5, · · · , p: at the p-th site there is a spin-j valued SU(2)
spin σp. [Spector]

Let us also shift the zero of the energy so that the Hamiltonian is
H = −

∑
p Bp

(
Ŝ (p)

3 + j1
)
. The eigenvalues of N̂p = Ŝ (p)

3 + j1 are
integers 0, 1, · · · , n = 2j + 1.
Since the spins are non-interacting, the phase operator φ̂p at the p-th
site satisfies the shift covariance relation

[φ̂p, eβ
∑p

2 BpN̂p ] = iβeβ
∑p

2 BpN̂p

only for the special values β = 2πik
Bp(n+1) (mod 2π/Bp) with k = 1, · · · , n

and p = 2, · · · , p.

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

Dressing the spin model

Let us label the sites of the one-dimensional lattice by the first p prime
numbers p = 2, 3, 5, · · · , p: at the p-th site there is a spin-j valued SU(2)
spin σp. [Spector]
Let us also shift the zero of the energy so that the Hamiltonian is
H = −

∑
p Bp

(
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A special choice of the magnetic field

Let us choose the local magnetic field as Bp = ln p. The partition
function is

Z (β) =

p∏
p=2

( n∑
mp=0

eβmp ln p
)

=

p∏
p=2

1− pβ(n+1)

1− pβ

In the thermodynamic limit p→∞ (formal?)

Z (β) = lim
p→∞

p∏
p=2

1− pβ(n+1)

1− pβ
=

ζ(−β)

ζ (−(n + 1)β)

a ratio of the Riemann zeta functions. (Note: n may be finite.)
This has the exact same form as the partition functions of a
κ-parafermionic primon gas of [Julia] and [Bakas-Bowick] with κ = n + 1
and s = −β. It would be interesting to try to relate the parafermionic
variables to the spin degrees of freedom.
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Comments

I Z (β) has zeroes at the non-trivial zeroes of ζ(−β) (from the
numerator),

I also at β = −1/(n + 1) (from the pole of ζ (−(n + 1)β) in the
denominator). This is the only real zero—it is at an unphysical
value of the (inverse) temperature.

I The trivial zeroes of ζ(−β) are not zeroes of the partition function.

I There are additional poles (from the zeroes of the ζ-function in the
denominator).

I the nontrivial zeroes are the Fisher zeroes in the complex β-plane.
They do not have an accumulation point on the real line. Also
conjecturally the zeroes of the ζ-function are isolated. So these
zeroes are not related to any phase transition—consistent with what
is expected physically.
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Analyticity of the PF

The spectrum of the phase operator is encoded in the trace of its
resolvent:

p∑
p=2

∑
np∈Z

n∑
kp=0

1

1− e iφkp+i 2πnp
ln p −iφ

−
∑
p,np

1

1− e i 2πnp
ln p −iφ

(the subtracted term is the pole due to k = 0).

Using Mittag-Leffler
theorem, assuming analyticity, we can rewrite (the singular part of it) as

≈ −i d
dφ

ln
( p∏

p=2

1− p−(n+1)iφ

1− p−iφ

)
In the p→∞ limit

−i d
dφ

ln
(

ζ(iφ)

ζ ((n + 1)iφ)

)
for Re (iφ) > 1. This is related to the partition

function of the ‘spin model’.
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Incommensurate periodicities

We have a phase operator for each site—that is too many. The sum∑
p φ̂p does not have the desired shift covariance relation. (Because the

site dependence of the magnetic field Bp = ln p leads to incommensurate
periodicity.)

Aggregate phase operator ϕ: on the state
⊗

p |φp,kp 〉 it acts as e iφ̂p if
one, and only one, of the eigenvalues φp 6= 0, otherwise this operator
acts as the identity.

e iϕ =

p∑
p=2

e iφ̂p
∏
q 6=p

δφq ,0 +
2

n 6=0(n 6=0 − 1)

p∑
p1,p2=1

∏
p1 6=p2

(1− δφp1 ,0)(1− δφp2 ,0)

where n 6=0 =
∑

p(1− δφp,0) is the number of sites where the phase is
non-zero. Eigenvalues are in

⋃
p U(1) (and not in (U(1))p.

Alternatively, project on a subspace, in which only one, and exactly one,
phase is different from zero and use the total phase operator in this
subspace.

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

Incommensurate periodicities

We have a phase operator for each site—that is too many. The sum∑
p φ̂p does not have the desired shift covariance relation. (Because the

site dependence of the magnetic field Bp = ln p leads to incommensurate
periodicity.)
Aggregate phase operator ϕ: on the state

⊗
p |φp,kp 〉 it acts as e iφ̂p if

one, and only one, of the eigenvalues φp 6= 0, otherwise this operator
acts as the identity.

e iϕ =

p∑
p=2

e iφ̂p
∏
q 6=p

δφq ,0 +
2

n 6=0(n 6=0 − 1)

p∑
p1,p2=1

∏
p1 6=p2

(1− δφp1 ,0)(1− δφp2 ,0)

where n 6=0 =
∑

p(1− δφp,0) is the number of sites where the phase is
non-zero. Eigenvalues are in

⋃
p U(1) (and not in (U(1))p.

Alternatively, project on a subspace, in which only one, and exactly one,
phase is different from zero and use the total phase operator in this
subspace.

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

Incommensurate periodicities

We have a phase operator for each site—that is too many. The sum∑
p φ̂p does not have the desired shift covariance relation. (Because the

site dependence of the magnetic field Bp = ln p leads to incommensurate
periodicity.)
Aggregate phase operator ϕ: on the state

⊗
p |φp,kp 〉 it acts as e iφ̂p if

one, and only one, of the eigenvalues φp 6= 0, otherwise this operator
acts as the identity.

e iϕ =

p∑
p=2

e iφ̂p
∏
q 6=p

δφq ,0 +
2

n 6=0(n 6=0 − 1)

p∑
p1,p2=1

∏
p1 6=p2

(1− δφp1 ,0)(1− δφp2 ,0)

where n 6=0 =
∑

p(1− δφp,0) is the number of sites where the phase is
non-zero. Eigenvalues are in

⋃
p U(1) (and not in (U(1))p.

Alternatively, project on a subspace, in which only one, and exactly one,
phase is different from zero and use the total phase operator in this
subspace.

D Ghoshal (JNU) Phase operator on L2(Qp) and the zeroes of its resolvent



Motivation
Phase operator

A simple model in statistical mechanics
Phase operators related to the ζ-function

Aggregate phase operator

The aggregate phase operator can be shown to satisfy[
ϕ,Π1e−βHΠ1

]
= iβ Π1e−βHΠ1

which holds in the subspace (to which we project by Π1) for all
β = 2πk

Bp(n+1) (mod 2π/Bp) where k = 1, · · · , n and p = 2, · · · , p.

Note:
In several examples in quantum theory, the domain of the canonical
commutator is not the entire Hilbert space.
In the limit p→∞, a closure of this subspace to obtain a closed
subspace will be necessary.
Except for a pole at φ = 0, the analytic properties of the trace of the
resolvent of the aggregate phase operator are related to that of the
partition function.
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Another proposal: a simple example

In the basis of eigenstates {|n〉} (n = 0, 1, · · · , n) of the number operator
N̂, define

Φ̂ =
∑
m 6=n

i |m〉〈n|
m − n

This is a (n + 1)× (n + 1) hermitian Toeplitz matrix.
On a state |v〉 =

∑
n vn|n〉

[Φ̂, N̂]|v〉 = i |v〉 if and only if
n∑

n=0

vn = 0

The commutator holds in a codimension one subspace. E.g., vns can be
the nontrivial (n + 1)-th roots of unity. [Galindo]
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Local ζp-function as trace

The local factors ζp(s) = 1/(1− p−s) =
∞∑

m=0

p−sm can be realised as the

trace of the generalised Vladimirov derivative D−s
(p) in

L2
(
p−1Zp

)
⊂ L2 (Qp).

It is spanned by the orthonormal set of its eigenfunctions which are the
Kozyrev wavelets (locally constant, mean zero, complex valued functions
with compact support in Qp).

The eigenvalues are labelled by integers n(p) ∈ Z. Corresponding
eigenstates are denoted by

∣∣n(p)〉. More details in the next talk by Dutta.
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Local phase operator on L2
(
p−1Zp

)
For a fixed value of p, the local phase operator

i
ln p

∑
n(p)
a 6=n(p)

b

|n(p)
a 〉 〈n(p)

b |
(n(p)a − n(p)b )

with n(p) ≥ 0 acts on L2(p−1Zp).

This is a Toeplitz matrix—its
eigenvectors |k(p)〉 can (in principle) be found.

For the full space ⊗pL2(p−1Zp), we use prime factorisation

n =
∏
p

pn(p) ←→ |n〉 = ⊗p|n(p)〉

These are (orthonormal) eigenfunctions of the Hamiltonian is
H =

∑
p ln p N(p)

H|n〉 =
∑
p

n(p) ln p |n〉 = ln n |n〉
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Proposed Toeplitz type phase operator

Take a finite linear combination of the form |v〉 =
∑

n vn|n〉. Further, we
require that vn ≡ v(n(2),n(3),···) =

∏
p vn(p) , i.e., the coefficients factorise.

Let n = maxp{n(p)}. There is also a highest prime p, above which all
n(p>p) = 0 in the factorisations.

Φtot =



n∑
n(p)a , n(p)

b
=0

not all n(p)a =n(p)
b

i
(⊗

pa≤p |n
(pa)
i 〉

)(⊗
pb≤p

〈n(pb)
b |

)
∑

p≤p(n(p)a − n(p)b ) ln p
for n(p)a , n(p)b ≤ n

⊗
p>p

|n(p) = 0〉〈n(p) = 0| otherwise

For p > p, |n(p) = 0〉 is the ‘vacuum’ state in the number representation.
In the limit p→∞ this should be a well defined Toeplitz operator on
⊗pL2(p−1Zp). However, we do not have a proof.
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Extension to Dirichlet L-functions

Riemann ζ-function is a part of the family of Dirichlet L-functions,
defined as the analytic continuation of the Dirichlet series

L(s, χ) =
∞∑

n=1

χ(n)

ns =
∏

p ∈ primes

1
1− χ(p)p−s , Re(s) > 1

(where χ(n) : (Z/kZ)∗ → S1 is a Dirichlet character) to the complex
s-plane.

Just as in the case of ζ-function, the local factor
1

1−χk (p)p−s =
∑∞

np=0 χk(p)npp−nps is the trace (in L2
(
p−1Zp

)
) of a

pseudodifferential operator, a Vladimirov-type derivative D−s
(p)x twisted by

a Dirichlet character.

Kozyrev wavelets are common set of eigenfuctions of all these (mutually
commuting) Vladimirov type derivatives. Indeed the operators can be
related by suitable unitary transformations Dutta-DG. The rest of the
story is very similar—one can repeat all arguments almost mutatis
mutandis—therefore, we skip the details.
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Extension to Dirichlet L-functions

Riemann ζ-function is a part of the family of Dirichlet L-functions,
defined as the analytic continuation of the Dirichlet series

L(s, χ) =
∞∑

n=1

χ(n)

ns =
∏

p ∈ primes

1
1− χ(p)p−s , Re(s) > 1

(where χ(n) : (Z/kZ)∗ → S1 is a Dirichlet character) to the complex
s-plane. Just as in the case of ζ-function, the local factor

1
1−χk (p)p−s =

∑∞
np=0 χk(p)npp−nps is the trace (in L2

(
p−1Zp

)
) of a
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Lack of uniqueness

A phase operator cannot be defined uniquely—it is ambiguous upto a
similarity transform. [Galindo]

Given a phase operator φ̂, the operator φ̂α = e−αN̂ φ̂eαN̂ is related by a
similarity transform labelled by a parameter α.
Since the shift covariance relation holds only in a subspace of
codimension one of the full Hilbert space, this statement is not trivial (as
it would have been otherwise).

By suitably choosing the coefficients that determine the subspace, and
the parameter α, the phase operators related to the Riemann ζ- and the
Dirichlet L-functions can be related by unitary transformations.
Dutta-DG.
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Conclusions

I Generalised Vladimirov derivative on the subspace L2(p−1Zp) of
complex valued locally constant functions on Qp is like the number
operator in quantum simple harmonic oscillator.

I Proposed to define a ‘phase operator’ conjugate to it (in an
appropriately defined sense) on a subspace.

I Futher discussed how to combine these for all primes (at physicists’
level of rigour).

I Commented on the connection between the distribution of the
eigenvalues of the resolvent function of this operator and the
non-trivial zeroes of the Riemann zeta function.

I Mentioned the extension to the Dirichlet L-functions.

Thank you!
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